Background

The Winter 2002 issue of *Tennessee Concrete* on concrete testing contained excellent articles by Mote and Marasa (1), Brown (2), and Lobo (3) on the pros and cons of PCC cylinder testing. Is there an alternative method for evaluating PCC curing progress? Yes, concrete maturity.

PCC gains strength and durability from reactions between Portland cement, supplementary cementing materials and water. The continuation of the chemical reactions is commonly termed curing. Curing progress is most commonly measured with compressive strength development. Curing progress is a function of time, temperature, and moisture conditions. Provided that adequate moisture is available, curing progress is a function of time and temperature. The maturity index is a function of time and temperature. Nurse and Saul performed some of the early research on the maturity concept. AASHTO T 276-97 (4) recommends the Plowman equation based on the earlier work of Nurse and Saul.

\[M = \sum_{t=0}^{t} (T - T_0) \Delta t \]

where:
- \(M \) = maturity index
- \(T \) = average concrete temperature during time \(Dt \)
- \(T_0 \) = datum temperature (usually -10°C (14°F))
- \(t \) = elapsed time hours
- \(\Delta t \) = time interval (hours)

Just as depressing the accelerator on a vehicle makes the vehicle speed up, increasing the curing temperature makes the chemical reactions in PCC speed up. To continue the analogy, the maturity index measures the progress of curing like mile markers on an interstate measure the distance the vehicle has traveled. The maturity index is simply an alternative to compressive strength development for measuring the progress of PCC curing.

The advantage of the maturity concept over casting, transporting, curing, capping, and testing PCC cylinders is logistical. Casting, curing, transporting, capping, and testing PCC cylinders requires considerable time and effort and affords many opportunities for mistakes that most often reduce observed compressive strength (see *Tennessee Concrete* Winter 2002).
QUESTION 1:
How does the new maturity technology differ from previous technology?

The new concrete maturity system is not a theoretical breakthrough; it uses the same maturity concepts that have been available since the 1950s. However, it is a technological leap forward. The new system virtually eliminates the problems of vandalism, theft, and accidental damage associated with traditional field maturity meters. The new concrete maturity system (shown in Figure 1) uses an independent embedded microprocessor (logger) that requires no permanent external connection. The logger calculates the maturity index every 15 minutes. The reader unit downloads maturity index values as well as maximum and minimum temperatures when connected to a logger. One reader unit can be used in conjunction with an unlimited number of independent embedded loggers.

QUESTION 2:
Does the new system eliminate PCC cylinders?

No, the maturity method requires a correlation curve based on PCC cylinder compressive strengths. A pictorial summary of how to develop a compressive strength maturity correlation plot is shown in Figure 2. However, it does not require cylinders to be cast, transported, cured, capped, or tested after the initial correlation plot is developed for that PCC mixture. Fewer opportunities are available for mistakes, less labor is required, and the maturity index can be measured nearly continuously rather than at discreet points like compressive strength.
QUESTION 3: Is the new system rugged, precise, and accurate?

This question is being investigated in a project jointly sponsored by TDOT and TRMCA at Tennessee Technological University. The project began in August 2002 and is scheduled to conclude in December 2003. The project uses a dual approach to evaluate the new maturity technology. In the laboratory, 120 6x12 cylinders from the same batch of Class A TDOT PCC are divided into four groups of thirty cylinders each. Each group is subjected to a curing temperature regime. Sets of cylinders from each curing regime are broken at pre-determined maturity values to determine the validity of the maturity concept. In the field, two compressive strength-maturity correlation plots are constructed using field mixtures for actual Tennessee PCC pavements. The compressive strength-maturity correlation plots are used to predict compressive strength development of later placements of the same PCC mixture on the same job. The accuracy of these predictions are determined by comparing predictions with measured compressive strengths using lab-cured 6x12 cylinders, field-cured 6x12 cylinders, 4x8 pavement cores, rebound hammer measurements, and Windsor Probe data. One field evaluation was performed at the I-65 / SR 155 (Briley Parkway) interchange. A second field evaluation is planned for I-75 near Hamilton Place Mall in Chattanooga in July 2003.

Rugged? Early indications are that the new system is adequately rugged and durable for field use.

Precise? Multiple readers and loggers are showing excellent agreement in the laboratory and the field.

Accurate? To determine accuracy, a standard or true compressive strength is required. The research team selected field-cured 6x12 and 4x8 cores as the best estimate of actual PCC pavement compressive strength. The samples for these two strength evaluations techniques have experienced the same curing regime as the PCC in the pavement and therefore should provide the best estimate of in-place PCC strength. Lab-cured 6x12 cylinders measure
potential compressive strength rather than in-place strength due to a superior curing regime. Fortunately for the research team, the two estimates of in-place compressive strength from I-65 agreed very well as shown in Figure 3.

Agreement between average predicted and average measured compressive strengths for I-65 field project is shown in Table 1. Percent difference is calculated by the following formula:

\[
\% \text{ Difference} = \frac{\text{Predicted} - \text{Measured}}{\text{Measured}} \times 100
\]

QUESTION 4:
What is the cost of the new system?
A starter kit containing a reader, case, software, and twenty-five loggers costs $1500. Additional loggers (not reusable) are $25 each.

QUESTION 5:
Should the new system replace PCC cylinders for opening new PCC pavements to traffic?
TDOT Materials & Tests Division is currently considering this question. The information generated in the current project will assist TDOT in making the decision. With the project only about forty percent complete, it is too early for conclusions or recommendations. However, Table 2 summarizes the new system’s advantages and disadvantages compared to traditional cylinder tests for opening new PCC pavements.

<table>
<thead>
<tr>
<th>Table 1. Percent Difference in Predicted and Measured Average Compressive Strengths at the I-65 Field Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Rebound Hammer</td>
</tr>
<tr>
<td>Lab-cured 6x12 cylinders</td>
</tr>
<tr>
<td>Field-cured 6x12 cylinders</td>
</tr>
<tr>
<td>4x8 Cores</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2. Comparison of Lab-cured cylinders and the new maturity system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab-cured PCC Cylinders</td>
</tr>
<tr>
<td>--------------------------</td>
</tr>
<tr>
<td>Information availability</td>
</tr>
<tr>
<td>Representative of jobsite conditions?</td>
</tr>
<tr>
<td>Require correlation curve?</td>
</tr>
</tbody>
</table>

References

Acknowledgements
The authors gratefully acknowledge the financial support of the Tennessee Department of Transportation and the Tennessee Ready Mixed Concrete Association.

The authors would also like to thank Jim Norris of the American Concrete Pavement Association for extensive technical assistance with the project.

The research team would like to thank Harper Construction for providing low variability PCC (so we can clearly evaluate the new maturity technology) and for their cooperation during the study. Harper Construction personnel were very accommodating, exhibited an excellent “can do” attitude, and made things go very smoothly for the research team in the field.

The authors appreciate the field assistance provided by Matt Dryden of Metro Ready Mix, Landon Deel and Joe Fitts of IMI-Tennessee, Steve Hall, Danny Lane, Rick Winters, Rick Math, Bo Logan, Butch Clement, Calvin Humphreys, Donnie Gunton, and Lance Fittro of TDOT Materials & Tests Division, Alan Sparkman and Leigh Cheney of TRMCA, and Tim Dunn, V. James Dotson, Shane Beasley, Matt Tays, Sayward Touton, and Nathan Smith of Tennessee Technological University.

The authors would like to thank the TTU Center for Electric Power for administering the project and providing financial assistance.

The authors appreciate the assistance of Dr. Daniel Badoe (assistant principal investigator) and Dr. X. Sharon Huo (TTU supporting faculty).

Author Information
L. K. Crouch, Ph.D., P.E. is a professor of Civil Engineering at Tennessee Technological University.

T. Adam Borden, E.I. is a graduate research assistant pursuing a Master of Science in Civil Engineering at Tennessee Technological University.