ATHENS REGIONAL PARK

Finding a (pervious) concrete solution

AUSTIN FESMIRE
Director of Parks and Recreation for the City of Athens

Plus!
Lesson 4
from the TDOT/TCA/ACPA Maturity Project
Lesson 4:

New Maturity Technology 101

By L. K. Crouch and T. Adam Borden

Introduction

The recent TDOT/TRMCA/ACPA Evaluation of New PCC Maturity Technology Project generated a large quantity of data. The data generated can be analyzed to provide valuable lessons about PCC behavior. This paper is the fourth in a series of technology transfer articles. The authors appreciate the financial support of TDOT and TRMCA. We hope you find the information presented helpful in better understanding PCC behavior. In the fourth article, new maturity technology equipment and operations are discussed.

Equipment

The new maturity technology virtually eliminates the problems of vandalism, theft, and accidental damage associated with traditional field maturity meters. The new maturity technology uses an independent embedded microprocessor (logger) that requires no permanent external connection. The logger calculates a new maturity index every 15 minutes. The reader unit downloads maturity index values as well as maximum and minimum temperatures when connected to a logger. One reader unit can be used in conjunction with an unlimited number of independent embedded loggers, but it may only store two hundred data sets at one time. Logger data transferred to the reader can be downloaded to a personal computer in two formats: text and secure [1].

Figure 1. Maturity Reader

Figure 2. Close up of Reader Keypad

Figure 3. Maturity Logger

Figure 4. Embedded & Hooked To Reader

Figure 5. System Operation [1]
Generating a Compressive Strength-Maturity Correlation Plot

1. Sample PCC (field preferred, lab acceptable) - must use exact materials and proportions, correlation plots are PCC mixture specific.

2. Cast 20 6x12 cylinders [2, 3].

3. Install a maturity logger in 2 of the cylinders.

4. Activate maturity loggers - as soon as the cylinders are cast.

5. Initial curing of the cylinders [2, 3].

6. Transport cylinders to the lab - if cast in the field.

7. Cure the cylinders in the lab - use standard conditions.

8. Measure the maturity - just before breaking a pair of cylinders, measure and record the maturity of the two cylinders containing loggers (never break the cylinders containing loggers).

9. Determine compressive strength development - break a pair of cylinders at 1, 2, 3, 4, 7, 10, 14, 28, and 56 days [4].

10. Construct the compressive strength-maturity correlation plot - plot compressive strength (y axis) vs. measured maturity (x axis). Connect the points with straight lines.

11. The target maturity is determined as follows:
 - On the compressive strength-maturity correlation plot locate the first day the required compressive strength is exceeded. Label the maturity for that day M_1 and the compressive strength for that day S_1.
 - On the compressive strength-maturity correlation plot locate the last day the compressive strength measured was below the required compressive strength. Label the maturity for that day M_2 and the compressive strength for that day S_2.
 - Call the required compressive strength S.
 - Call the target maturity TM.

\[(S - S_1)/(TM - M_1) = (S_2 - S_1)/(M_2 - M_1) \]

An example for $S = 3000$-psi is shown in the Step 10 & 11 of Figure 6.

Figure 6. Correlation Procedure
Field Operations for the First Twelve Times Maturity Is Used for Acceptance of Each PCC Mixture Design

1. Sample PCC in the field.
2. Cast 4 or more field-cured 6x12 cylinders and cure in close proximity to the structure [3].
4. Activate loggers – as soon as structure is cast.
5. Monitor maturity index in the structure.
6. Between 100 and 110 percent of target maturity:
 a. Take a maturity reading;
 b. Predict compressive strength with compressive strength-maturity correlation curve;
 c. Break a pair of field-cured 6x12 cylinders.
7. Determine required maturity index for acceptance. To accept the PCC as meeting specifications, the one-sided confidence limit is [6]:
 \[S_m > (LL + K) \]
 where:
 \(S_m \) = predicted strength near target maturity
 \(LL \) = specified lower limit (required compressive strength)
 \(K \) = \(1.645 \times (S_m - S_m\text{avg})^2 / 2n \)
 \(K \) = measure of variability between predicted and measured strengths.
 \(1.645 \) = confidence coefficient for a 5% probability of accepting material with a strength below LL.
 \(S_m\text{avg} \) = measured strength near target maturity
 \(n \) = number of paired \((S_m, S_m\text{avg}) \) values used in the analysis.
The required maturity index for acceptance is the maturity index corresponding to \(S_m \). \(K \) is established using field-cured cylinders and maturity predictions from the first twelve times the maturity index used for acceptance of a particular PCC mixture design. Prior to establishing \(K \), the PCC in the structure can be accepted in one of three ways:

A. Accept the PCC with a 95% confidence level that no compressive strength in that lot was less than required compressive strength when the maturity index corresponding to \(S_m \) was read on the loggers for the lot (assuming \(K = 1200 \)-psi, a very conservative assumption), or

B. Using the compressive strength from a pair of field-cured cylinders, or

C. Using cores cut from the structure [7].

Field Operations After \(K \) is Established (Batch Number 13+)

1. Install maturity loggers in the PCC structure — see AASHTO TP 32-95 [5] for guidance on the number and location of loggers.

2. Activate loggers — as soon as structure is cast.

4. Accept the PCC with a 95% confidence level that no compressive strength in that lot was less than required compressive strength when the maturity index corresponding to \(S_m \) was read on the loggers for the lot.

Additional Guidance on Field Operations

1. At the discretion of the engineer, additional pairs of field-cured cylinders may be required to refine \(K \). \(K \) values greater than or equal to 800-psi indicate high variability and require further refinement / investigation.

2. At the discretion of the engineer, a new compressive strength-maturity correlation plot may be required. A new compressive strength-maturity correlation plot should be considered when \(S_m \) is greater than 1.10 * \(S_{MTN} \).

3. After the first 12 batches, it is prudent to periodically check the maturity predictions with field-cured cylinders.

Figure 7. Field Operations Prior To Establishing \(K \)

Example of Acceptance Calculations

Assume the required compressive strength is 3000-psi. Table 1 shows assumed data. Table 2 shows example calculations.

<table>
<thead>
<tr>
<th>(S_{MTN})</th>
<th>2482</th>
<th>3496</th>
<th>3234</th>
<th>3235</th>
<th>3494</th>
<th>3064</th>
<th>3024</th>
<th>3053</th>
<th>3181</th>
<th>3610</th>
<th>3762</th>
<th>3766</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_m)</td>
<td>3010</td>
<td>2958</td>
<td>3034</td>
<td>3025</td>
<td>3030</td>
<td>3056</td>
<td>3264</td>
<td>3266</td>
<td>2974</td>
<td>2998</td>
<td>2985</td>
<td>2976</td>
</tr>
</tbody>
</table>

Table 2. Calculations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\sigma (S_m - S_{MTN})^2/2n)^{0.5})</td>
<td>324.7</td>
</tr>
<tr>
<td>(K)</td>
<td>534.1</td>
</tr>
<tr>
<td>(LL)</td>
<td>3000</td>
</tr>
<tr>
<td>(LL + K)</td>
<td>3534</td>
</tr>
</tbody>
</table>
The PCC could be accepted with a 95% confidence level that no compressive strength in that lot was less than 3000-psi when the maturity index corresponding to 3534-psi was read on the loggers for the lot.

New Maturity Technology Logistics

The recent TDOT/TRMCA/ACPA study showed the new maturity technology to be robust and reliable enough for field or laboratory use.

Recommendations

1. When information on in-place PCC strength is required, use field-cured cylinders cured in close proximity to the structure for jobs requiring less than 30 batches of the same PCC mixture.
2. When information on in-place PCC strength is required for job with 30 or more batches of the same PCC mixture, use field-cured cylinders in conjunction with the new maturity technology.

References

L. K. Crouch, Ph.D., P.E., is a professor of Civil Engineering at Tennessee Technological University.

T. Adam Burden, P.E. is staff professional at S & ME Blountville, TN and a former graduate research assistant at Tennessee Technological University.

Acknowledgements

The authors wish to gratefully acknowledge the financial support of the Tennessee Department of Transportation, the Federal Highway Administration and the Tennessee Ready Mixed Concrete Association.

We would especially like to thank Harper Construction, Volkert and Associates Inc., Vulcan Materials of Chattanooga, TDOT Region 2 Materials and Tests, TDOT Region 3 Construction and Irving Materials Inc. of Cookeville, TN.

The authors sincerely appreciate the technical assistance provided by:
- Jim Norris of ACPA
- Matt Dryden of Metro Ready Mix
- Landon Deel and Joe Pitts of Irving Materials Inc.
- Richard Sallie of Nomadics Inc.
- Alan Sparkman and Leigh Cheney of TRMCA
- Steve Hall, Brian Fagan, Heather Hall, Danny Lane, Rick Muth, Bo Logan, Bunch Clement, Calvin Humphreys, Donnie Gant, Lance Pittro and Rick Winters of TDOT Materials and Tests Division
- Tim Dunn, Matthew Tinsley, Shane Brickley, Jamesy Duson, Rob Bailey, Kim Couch, Perry Melton, Nathan Smith and Wayward Toulon of Tennessee Tech University.
- Dr. Daniel Badone (assistant principal investigator) and Dr. X. Sharan Huo (TTU supporting faculty).

The authors gratefully acknowledge the financial support, financial project management, and computer assistance of the TTU Center for Electric Power.